Mathias forcing for filters and combinatorial covering properties

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Hejnice, February 1, 2016

A subset \mathcal{F} of $[\omega]^{\omega}$ is called a *filter* if \mathcal{F} contains all cofinite sets, is closed under finite intersections of its elements, and under taking supersets.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families, making the ground model reals not splitting, etc.

$\mathbb{M}_\mathcal{F}$ and dominating reals

Let $x,y\in \omega^\omega.$ The notation $x\leq^* y$ means $x(n)\leq y(y)$ for all but finitely many n.

 \mathfrak{b} (resp. $\mathfrak{d})$ is the minimal size of an $\leq^*\text{-unbounded}$ (resp. dominating) $A\subset\omega^\omega.$

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$.

Example: Laver forcing, Hechler forcing.

Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d}=\mathfrak{c} \text{ implies the existence of an ultrafilter } \mathcal{F} \text{ such that } \mathbb{M}_{\mathcal{F}} \text{ does not add} \\ \text{dominating reals.} \qquad \Box$

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals. Let B be an unbounded subset of ω^{ω} . A filter \mathcal{F} on ω is called B-Canjar if $\mathbb{M}_{\mathcal{F}}$ adds no reals dominating all elements of B.

There is a combinatorial characterization of Canjar filters by Hrusak and Minami in terms of the filter $\mathcal{F}^{<\omega}$ on $[\omega]^{<\omega}$ generated by $\{[F]^{<\omega} : F \in \mathcal{F}\}.$

$\mathbb{M}_\mathcal{F}$ and dominating reals: continuation

Theorem (Brendle 1998)

1) Every σ -compact filter is Canjar.

2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

If an ultrafilter \mathcal{F} is Canjar, then it is a P-filter and there is no monotone surjection $\varphi: \omega \to \omega$ such that $\varphi(\mathcal{F})$ is rapid. The converse is consistently not true by a recent result of Blass, Hrusak and Verner. Its proof relies on the following characterization

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n : n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n : n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$. Strong P^+ -filters are defined by removing the coherence requirement. A topological space X has the Menger covering property (or simply is Menger), if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there exists a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X.

If, moreover, we can choose \mathcal{V}_n in such a way that for any $x \in X$ we have $x \in \bigcup \mathcal{V}_n$ for all but finitely many $n \in \omega$, then X is called Hurewicz.

Example: every σ -compact space is Hurewicz. More generally: a union of fewer than \mathfrak{b} (resp. \mathfrak{d}) compacts is Hurewicz (resp. Menger).

$$\begin{split} & \omega^{\omega} \text{ is not Menger as witnessed by } \langle \mathcal{U}_n : n \in \omega \rangle, \\ & \mathcal{U}_n = \big\{ \{ x : x(n) = k \} : k \in \omega \big\}. \end{split}$$

Theorem (Chodounský-Repovš-Z. 2014)

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$.

Theorem (Chodounský-Repovš-Z. 2014)

Let \mathcal{F} be a filter. Then $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Recall that a poset \mathbb{P} is almost ω^{ω} -bounding if for every \mathbb{P} -name \dot{f} for a real and $q \in \mathbb{P}$, there exists $g \in \omega^{\omega}$ such that for every $A \in [\omega]^{\omega}$ there is $q_A \leq q$ such that $q_A \Vdash g \upharpoonright A \not\leq^* \dot{f} \upharpoonright A$.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Corollary

 $(\mathfrak{d} = \mathfrak{c}.)$ There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ does not add a dominating real (= \mathcal{F} is Canjar).

Under $\mathfrak{d}=\mathfrak{c}=\mathfrak{u}$ it was proved by Guzman, Hrusak, and Martinez.

Corollary

A filter \mathcal{F} is Canjar iff it is a strong P^+ -filter.

П

Theorem (Guzman-Hrusak-Martinez 2013) A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n

and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Strong P^+ -filters are defined by removing the coherence requirement.

An auxiliary claim.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$. Breaking some of the sets $[n_i, q_i]$ into smaller pieces of the same form, we may assume if necessary that for some $n \in \omega$ we have $n_i = n$ for all $i \in m$. Moreover, wlog no proper subcollection of $\mathcal{O}' = \{[n, q_i]: i < m\}$ covers $\uparrow X$. Therefore $\{q_i: i < m\} = \{t \subset n: X \cap n \subset t\}$, and consequently $\bigcup_{i < m} [n, q_i] = \uparrow (X \cap n)$. Thus $X \in \uparrow X \subset \uparrow (X \cap n) \subset \bigcup \mathcal{O}'$.

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^{\omega}$, $X \in V$, and an $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_{\mathcal{F}}}$). For every $x \in X$ find $n^x \in \omega$ and a condition $\langle s^x, F^x \rangle$ forcing $x(n) < \dot{g}(n)$ for all $n \ge n^x$. Since X cannot be covered by a countable family of bounded sets, wlog $s^x = s_*$ and $n^x = n_*$ for all $x \in X$.

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $\mathcal{U}_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F} . Since \mathcal{F} is Hurewicz, for every m there exists $\mathcal{V}_m \in [\mathcal{U}_m]^{<\omega}$ such that $\{\bigcup \mathcal{V}_m : m \in \omega\}$ is a γ -cover of \mathcal{F} . Let $\mathcal{T}_m \in [\mathcal{S}_m]^{<\omega}$ be such that $\mathcal{V}_m = \{\uparrow s : s \in \mathcal{T}_m\}$ and $f(m) = \max\{g_s(m) : s \in \mathcal{T}_m\}$. We will derive a contradiction by showing $x <^* f$ for each $x \in X$. Fix $x \in X$ and $l \in \omega$ such that for every $m \ge l$ there exists $s_m \in \mathcal{T}_m$ such that $F^x \in \uparrow s_m$. Pick any $m \ge n_*, l$. Since $\langle s_*, F^x \rangle \Vdash x(m) < \dot{g}(m), \langle s_* \cup s_m, F_{s_m} \rangle \Vdash \dot{g}(m) \le f(m)$, and these two conditions are compatible, it follows that x(m) < f(m).

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$. For every n there exists g(n) such that $G \setminus n \in \uparrow q_{g(n)}(n)$. Fix $F \in \mathcal{F}$ and find n such that $G \setminus n \subset F$. Then $G \setminus n \in \uparrow q_{g(n)}(n)$ yields $F \in \uparrow q_{g(n)}(n)$, which implies $x_F(n) \leq g(n)$. Thus $g \in \omega^{\omega}$ is dominating X, and therefore $\mathbb{M}_{\mathcal{F}}$ fails to preserve ground model unbounded sets.

Question

Let $\mathcal{A} \subset [\omega]^{\omega}$ be a mad family. Is there a Hurewicz filter \mathcal{F} containing $\mathcal{F}(\mathcal{A})$?

Question

(CH) Let \mathcal{U} be a meager filter generated by a tower. Is there a Hurewicz filter \mathcal{F} containing \mathcal{U} ?

Thank you for your attention.